ПРИНЯТА

Педагогическим советом ГБОУ лицей №226 Фрунзенского района Санкт-Петербурга Протокол от 29.08.2025 №1

УТВЕРЖДЕНА

Приказом директора ГБОУ лицей №226 Фрунзенского района Санкт-Петербурга от 29.08.2025 №82

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА **ИНТЕРНЕТ ВЕЩЕЙ**

Срок реализации: 1 учебный год (64 часа) Возраст обучающихся: 9-12 лет

Разработала:

педагог дополнительного образования Строганова В.Н.

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

Оглавление

Пояснительная записка	3
Концепция программы «Интернет вещей»	4
Цель и задачи программы	5
Особенности организации учебного процесса	6
Требования к результатам освоения курса	8
Контроль и оценка планируемых результатов	9
Материально-техническое обеспечение внеурочной деятельности	10
Список рекомендованной литературы	11
Содержание курса «Интернет вещей»	12
Основные разделы программы	14
Методы и формы работы	15
Формы проведения занятий	16
Тематическое планирование, 4 класс (64 часа)	18

Пояснительная записка

Направленность программы: Техническая

Адресат программы Программа предназначена для детей в возрасте от 9 до 12 лет.

Уровень освоения программы: базовый.

Актуальность программы обусловлена стремительной цифровой трансформацией современного общества и растущим спросом на специалистов в области Интернета вещей - технологии, которая уже сегодня меняет нашу повседневную жизнь. От «умных» домов до промышленных систем мониторинга - ІоТ становится неотъемлемой частью технологического ландшафта. Программа предлагает уникальный комбинированный подход, объединяющий виртуальное обучение в современном симуляторе Wokwi с практической работой на реальном оборудовании МГБОТ, что обеспечивает формирование комплексного и глубокого понимания ІоТ-технологий.

Педагогическая целесообразность

программы заключается в последовательном применении принципа «от виртуального к реальному». Этот подход позволяет преодолеть традиционные барьеры в изучении сложных технических дисциплин: страх повреждения дорогостоящего оборудования, ограниченность материалов, сложность одновременного освоения и программирования, и сборки схем. Начиная работу в безопасной виртуальной среде, учащиеся получают возможность делать ошибки и учиться на них без каких-либо материальных потерь, что значительно повышает эффективность образовательного процесса и снижает психологический барьер перед работой с реальными электронными компонентами.

Отличительные особенности программы:

1. Двухэтапное обучение «Виртуальный следователь - Реальный инженер»

Программа построена по принципу последовательного перехода от виртуального моделирования к физической реализации. На первом этапе учащиеся выступают в роли «виртуальных следователей» - в интерактивной среде Wokwi они исследуют принципы работы электронных компонентов, создают и отлаживают схемы, разрабатывают алгоритмы управления. Этот этап позволяет глубоко понять фундаментальные принципы без риска повредить оборудование. На втором этапе, получив уверенность и необходимые навыки, учащиеся становятся «реальными инженерами» - переносят отработанные решения на физические наборы МГБОТ, сталкиваются с нюансами реального оборудования и приобретают бесценный практический опыт. Такой подход обеспечивает прочное усвоение материала и формирует комплексное понимание всего жизненного цикла ІоТ-устройства.

2. Безопасность и доступность - Демократизация технологического образования

Использование симулятора Wokwi решает одну из ключевых проблем технического образования - ограниченную доступность дорогостоящего оборудования. Программа позволяет обеспечить качественное обучение даже в условиях, когда физических наборов недостаточно для каждого учащегося. Более того, виртуальная среда полностью устраняет риски, связанные с неправильным подключением компонентов, короткими замыканиями или повреждением дорогостоящих датчиков и микроконтроллеров. Учащиеся могут смело экспериментировать, исследовать граничные режимы работы устройств и учиться на собственных ошибках, что является важнейшим элементом эффективного обучения. Это делает изучение высоких технологий действительно доступным и безопасным.

3. Современность и релевантность - Язык профессионалов с первых шагов

В отличие от многих образовательных программ, использующих упрощенные или устаревшие инструменты, наша программа знакомит учащихся с Wokwi - симулятором, который активно используется профессиональными разработчиками по всему миру для

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

быстрого прототипирования IoT-устройств. Это означает, что учащиеся с самого начала осваивают актуальные инструменты и подходы, применяемые в индустрии. Работа с ESP32 - одной из самых популярных IoT-платформ - обеспечивает непосредственную связь с реальными производственными процессами и дает навыки, востребованные на современном рынке технологий. Таким образом, программа не просто учит основам, а готовит к дальнейшей профессиональной деятельности в области IoT.

4. Интерактивность и наглядность - Оживающая электроника

Wokwi предоставляет уникальные возможности для визуализации и понимания работы электронных систем. Учащиеся в реальном времени наблюдают, как изменения в коде мгновенно отражаются на поведении виртуальных компонентов: загораются светодиоды, вращаются моторы, изменяются показания датчиков. Встроенные инструменты отладки, такие как последовательный монитор и визуализатор состояния пинов, превращают абстрактные понятия программирования в наглядные и понятные процессы. Эта немедленная обратная связь создает эффект «оживающей электроники», поддерживает высокую мотивацию учащихся и способствует глубокому пониманию причинно-следственных связей в работе ІоТ-систем. Интерактивность превращает обучение в увлекательный исследовательский процесс, где каждый эксперимент приносит новые открытия.

Концепция программы «Интернет вещей»

В соответствии cПрограмма разработана требованиями Федерального образовательного стандарта начального общего образования и государственного направлена на формирование у учащихся основ цифровой грамотности и инженерной культуры. Курс реализуется в части учебного плана, формируемой образовательной организацией, в рамках общеинтеллектуального направления развития личности. Программа представляет систему интегрированных занятий, объединяющих элементы информатики, физики и технологии через изучение основ Интернета вещей. Особое внимание уделяется развитию алгоритмического мышления, технического творчества и проектных компетенций, которые составляют основу для успешного освоения предметов естественно-научного и технологического профилей в основной школе.

Данный курс способствует формированию метапредметных универсальных учебных действий: умению ставить учебные задачи, планировать этапы деятельности, корректировать решения на основе анализа результатов. Практическая работа в симуляторе Wokwi и с образовательными наборами МГБОТ создает условия для развития у детей познавательной активности, критического мышления и уверенности в работе с современными технологиями. В процессе обучения учащиеся осваивают принципы проектной деятельности, развивают навыки коллективной работы и презентации результатов, что формирует готовность к решению практических задач в условиях цифровой трансформации общества.

Обоснованность программы

Актуальность программы обусловлена стремительным развитием технологий Интернета вещей и возрастающей потребностью в подготовке школьников к жизни в цифровом обществе. Практика показывает, что учащиеся 9-12 лет проявляют естественный интерес к цифровым устройствам, но часто не понимают принципов их работы и не обладают навыками для осознанного создания технологических решений. Данная программа предлагает системный подход к формированию ІоТ-компетенций через специально разработанную последовательность виртуальных и реальных экспериментов, позволяющих преодолеть разрыв между теоретическими знаниями и практическим применением технологий.

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

Программа строится на принципе постепенного усложнения - от изучения отдельных компонентов в симуляторе Wokwi до создания комплексных IoT-устройств на платформе МГБОТ. Такой подход обеспечивает доступность сложных технических сопсерts через визуализацию и моделирование, что особенно важно для младших школьников. Интеграция виртуальной и реальной практики создает условия для формирования целостного представления о разработке электронных устройств - от идеи до работающего прототипа.

Особое значение имеет развитие у учащихся критического мышления и способности к самостоятельному решению технических задач. Через систему проектных работ программа формирует не только предметные знания в области электроники и программирования, но и метапредметные умения: анализ информации, планирование деятельности, работу в команде. Это создает прочную основу для дальнейшего изучения предметов естественно-научного цикла и осознанного выбора профессиональной траектории в области высоких технологий.

Новизна программы определена требованиями современной цифровой трансформации образования и потребностями формирования технологических компетенций у школьников. Отличительными особенностями являются:

- 1. Разработка системы проектной деятельности, интегрирующей виртуальное моделирование и физическое прототипирование для достижения личностных, метапредметных и предметных результатов освоения курса Интернета вещей.
- 2. Реализация двухэтапного подхода к обучению через последовательное усвоение материала от экспериментов в симуляторе Wokwi до создания работающих IoT-устройств на платформе МГБОТ.
- 3. Организация учебного процесса предусматривает критериальное оценивание достижений учащихся на основе анализа созданных цифровых прототипов, запрограммированных алгоритмов и функционирующих электронных устройств.
- 4. Мониторинг образовательных результатов осуществляется через комплексную систему оценки, включающую экспертизу виртуальных проектов, анализ практических работ с оборудованием и оценку защищенных IoT-разработок.
- 5. В основе оценки метапредметных результатов лежит методика анализа проектной деятельности, адаптированная для работы с цифровыми симуляторами и электронными компонентами.
- 6. При проектировании содержания занятий детально определены виды познавательной и практической деятельности учащихся по каждому модулю программы, обеспечивающие последовательное формирование компетенций в области Интернета вещей через интеграцию виртуального и реального экспериментирования.
- 7. Внедрение сквозной системы обратной связи, позволяющей отслеживать прогресс учащихся как в виртуальной среде (через автоматизированные отчеты Wokwi), так и при работе с физическими устройствами (через экспертные карты наблюдения).

Цель и задачи программы

Цель программы: Формирование у учащихся 9–12 лет базовых компетенций в области Интернета вещей (IoT) через освоение принципов проектирования, программирования и сборки электронных устройств с использованием современных образовательных технологий.

Основные задачи программы:

1. Развитие системного технического мышления в процессе освоения полного цикла создания ІоТ-устройств: от проектирования и виртуального моделирования

в симуляторе до сборки, программирования и тестирования работающих прототипов на реальных микроконтроллерах.

- 2. **Формирование практических компетенций работы с современным оборудованием:** освоение принципов подключения и управления датчиками, исполнительными механизмами, а также основ схемотехники и методов обработки данных с сенсоров.
- 3. **Развитие алгоритмического мышления и логики** через программирование взаимодействия устройств, создание автоматических сценариев и отладку кода с использованием как визуальных, так и текстовых сред программирования.
- 4. **Формирование основ сетевого взаимодействия и понимания облачных технологий:** изучение принципов подключения устройств к интернету, передачи данных и организации работы простых распределенных IoT-систем.
- 5. Стимулирование исследовательской активности и умения решать прикладные задачи от анализа потребности и постановки технического задания до самостоятельной практической реализации проекта.
- 6. **Развитие проектных компетенций и навыков эффективной коммуникации:** способности работать в команде, распределять задачи, представлять результаты своей работы и аргументированно защищать принятые технические решения.
- 7. **Формирование навыков интеграции знаний из разных дисциплин:** применения законов физики и математики для расчета параметров электронных схем, использования основ информатики для создания алгоритмов и понимания принципов работы сетевых технологий.

Таким образом, принципиальной задачей программы является формирование у учащихся целостного представления о создании цифровых устройств и развитие инженерной культуры через практическое освоение полного цикла разработки систем Интернета вещей, а не простое усвоение теоретических концепций.

Особенности организации учебного процесса

Программа каждого занятия рассчитана на 2 академических часа по 40 минут для учащихся 9-12 лет. Организация обучения строится на принципах индивидуальной проектной деятельности, где каждый учащийся последовательно осваивает все этапы создания IoT-устройства. Такой подход позволяет максимально развить самостоятельность и сформировать полное понимание технологических процессов.

Организация учебного процесса по курсу «Интернет вещей» (9-12 лет)

Программа реализуется через индивидуальную проектную деятельность с элементами коллективного взаимодействия. Каждое занятие продолжительностью 2 академических часа (80 минут) строится по следующей схеме:

1. Индивидуальная проектная деятельность:

- Персональное рабочее место с компьютером и доступом к симулятору Wokwi
 - Индивидуальный набор компонентов МГБОТ для практических работ
 - Личный кабинет учащегося для документирования проектов
 - Индивидуальная траектория освоения модулей программы

2. Применение методов ТРИЗ в индивидуальной работе:

- Решение технических противоречий при проектировании персональных ІоТ- устройств
- Использование приемов фантазирования для создания уникальных концепций

- Применение алгоритмов решения изобретательских задач при отладке проектов
 - Анализ ресурсов для оптимизации собственных разработок
 - Метод «идеального конечного результата» в планировании проектов

3. Система индивидуального наставничества:

- Персональные консультации педагога по каждому этапу проекта
- Индивидуальные воркшопы по работе с симулятором и оборудованием
- Личные карты прогресса с отслеживанием достижений
- Адаптация сложности заданий под возможности каждого учащегося

4. Этапы индивидуальной работы:

- Самостоятельное проектирование устройства в Wokwi
- Индивидуальное программирование алгоритмов работы
- Персональная сборка и пайка компонентов
- Автономное тестирование и отладка системы
- Документирование результатов проекта

5. Формы коллективного взаимодействия:

- Еженедельные обсуждения успехов и трудностей в мини-группах
- Взаимопомощь и обмен опытом между участниками
- Совместные выставки и презентации проектов
- Коллективное обсуждение инновационных идей

Такой подход позволяет развивать самостоятельность, ответственность за результат и глубокое понимание всех этапов создания IoT-устройств, сохраняя при этом возможности для социального взаимодействия и обмена опытом.

Организационные принципы:

Индивидуальная траектория развития - каждый учащийся осваивает полный цикл создания IoT-устройства от идеи до реализации

Проектная преемственность - результаты каждого этапа индивидуальной работы становятся основой для следующего уровня сложности

Динамическое формирование заданий - сложность и содержание задач адаптируются под текущие образовательные потребности и прогресс каждого учащегося

Рефлексивные сессии - персональный анализ достижений и выработка оптимальных стратегий развития

Методическое обеспечение включает:

- Комплект адаптивных заданий различного уровня сложности по каждому модулю
 - Систему индивидуальных кейсов для проектной работы
 - Набор ТРИЗ-инструментов для решения технических противоречий
 - Персональные карты прогресса с критериями оценивания
 - Библиотеку готовых компонентов и шаблонов для Wokwi и МГБОТ

Особое место в программе отведено подготовке к технологическим конкурсам и выставкам

Программа включает систематическую подготовку учащихся к участию в профильных мероприятиях, которая реализуется через:

1. Отработку конкурсных требований

- Создание полнофункциональных ІоТ-прототипов по техническому заданию
- Тренировки по презентации и защите проектов
- Разработка документации и инструкций для пользователя
- Оформление проектной документации согласно стандартам

2. Развитие конкурсных компетенций

- Навыки публичного представления технических решений
- Умение аргументировано отвечать на вопросы экспертов
- Способность адаптировать проект под changing условия конкурса
- Навыки эффективного использования ограниченного времени

3. Проектирование инновационных решений

- Оптимизация устройств под конкретные практические задачи
- Разработка уникальных технических и программных решений
- Создание специализированных датчиков и систем мониторинга
- Интеграция различных технологических платформ

Критерии готовности к конкурсам:

- Создание работоспособного ІоТ-устройства с полным функционалом
- Умение проводить быструю доработку и адаптацию проекта
- Наличие качественной проектной документации
- Сформированные навыки эффективной самопрезентации
- Способность обосновать практическую ценность разработки

Подготовка к конкурсным мероприятиям является логическим завершением учебного цикла и позволяет комплексно оценить сформированность всех целевых компетенций программы. Участие в выставках и конкурсах способствует развитию уверенности в своих силах и мотивации к дальнейшему техническому творчеству.

Требования к результатам освоения курса

Личностные результаты:

- Формирование ответственного отношения к работе с электронными компонентами и микроконтроллерами
- Развитие познавательной активности и интереса к созданию цифровых устройств
- Воспитание настойчивости в достижении цели при программировании и отладке IoT-систем
- Формирование культуры безопасной работы с электрооборудованием и паяльными инструментами
 - Развитие навыков самоконтроля и самооценки в проектной деятельности Метапредметные результаты:

Регулятивные УУД:

- Умение планировать последовательность действий при проектировании и сборке IoT-устройств
- Способность корректировать алгоритмы на основе анализа ошибок и тестирования
 - Навыки тайм-менеджмента при выполнении индивидуальных проектов **Познавательные УУД:**
- Развитие алгоритмического мышления при программировании микроконтроллеров
 - Формирование навыков работы с технической документацией и схемами
- Умение анализировать причины успехов и неудач в создании электронных устройств

Коммуникативные УУД:

- Владение техниками презентации и защиты ІТ-проектов
- Развитие навыков аргументации технических решений
- Умение эффективно взаимодействовать с педагогом и консультантами

Предметные результаты:

Учащиеся должны знать:

- Основы архитектуры ІоТ-устройств и принципы их работы
- Базовые понятия электроники и схемотехники
- Основы программирования микроконтроллеров в средах Wokwi и Arduino

IDE

• Правила безопасности при работе с электронными компонентами и паяльным оборудованием

Учащиеся должны уметь:

- Создавать и тестировать электронные схемы в симуляторе Wokwi
- Программировать базовые алгоритмы для устройств Интернета вещей
- Собирать и настраивать физические ІоТ-устройства на платформе МГБОТ
- Проводить отладку и оптимизацию работы электронных систем
- Модернизировать проекты под конкретные практические задачи

Учащиеся должны владеть:

- Навыками работы с симулятором Wokwi и оборудованием МГБОТ
- Основами проектной документации IT-проектов
- Методами поиска и устранения неисправностей в электронных схемах
- Способами оптимизации программного кода и аппаратных решений

Контроль и оценка планируемых результатов

В основу изучения курса положены ценностные ориентиры технологического творчества и цифровой культуры, достижение которых определяется образовательными результатами. Оценка результатов проводится по трём уровням освоения программы.

Первый уровень результатов - приобретение базовых компетенций:

- Овладение приемами сборки и настройки электронных схем
- Формирование начальных навыков программирования в симуляторе Wokwi
- Умение читать и понимать принципиальные схемы и инструкции
- Освоение основ безопасной работы с электронными компонентами

Второй уровень результатов - развитие практических умений:

- Способность модифицировать схемы для решения конкретных задач
- Умение анализировать работу устройств и корректировать программный код
- Навыки программирования базовых алгоритмов взаимодействия устройств
- Умение диагностировать типовые неисправности и устранять их

Третий уровень результатов - достижение проектной зрелости:

- Способность разрабатывать и реализовывать комплексные IoT-системы
- Умение оптимизировать технические решения с учетом множеством факторов
 - Навыки самостоятельной работы над сложными проектами
- Способность творчески применять методы ТРИЗ для решения нестандартных задач

Диагностика результатов освоения программы

Первый уровень результатов - приобретение школьником технических знаний и первичного понимания принципов работы IoT-устройств:

- Знание основных компонентов ІоТ-систем и их назначения
- Понимание основ схемотехники и программирования
- Знание правил безопасности при работе с электрооборудованием
- Понимание основ сетевого взаимодействия устройств

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

Второй уровень результатов - получение школьником опыта практического применения знаний:

- Осознание важности точности и аккуратности при сборке схем
- Формирование ответственного отношения к оборудованию и данным
- Развитие настойчивости, упорства при решении технических задач
- Ценностное отношение к качеству программного кода и документации

Третий уровень результатов - получение школьником опыта самостоятельного проектирования:

- Умение самостоятельно разрабатывать и реализовывать комплексные IoTпроекты
- Способность представлять результаты технологического творчества широкой аудитории
 - Готовность к участию в конкурсах и защите своих разработок
 - Формирование системного мышления и изобретательских компетенций Формы контроля:
 - Стартовый контроль для определения исходного уровня подготовки
 - Текущий контроль:
 - о Прогностический планирование последовательности разработки
 - о Пооперационный контроль за правильностью сборки и программирования
 - о Рефлексивный анализ соответствия технических решений задачам проекта
 - о Контроль по результату оценка работоспособности созданных устройств

Итоговый контроль:

- Защита индивидуальных проектов
- Демонстрация работающих ІоТ-устройств
- Участие в технологических конкурсах и выставках
- Презентация портфолио проектов

Система оценки предусматривает выявление индивидуальной динамики развития технологических компетенций каждого учащегося. Результаты фиксируются в диагностической карте, ведется цифровое портфолио достижений, включающее скриншоты виртуальных проектов, фото физических устройств и видео демонстрации их работы.

Материально-техническое обеспечение внеурочной деятельности

Для учащихся:

- Персональные компьютеры/ноутбуки для программирования и работы в симуляторе
 - Стартовые наборы МГБОТ на базе микроконтроллеров ESP32
- Индивидуальные наборы электронных компонентов (датчики, светодиоды, резисторы, провода)
 - Макетные платы
 - Система хранения для индивидуальных проектов и компонентов

Для педагога:

- Демонстрационный комплект оборудования МГБОТ
- Ноутбук/ПК педагога с установленным ПО
- Мультимедийный проектор или интерактивная панель
- Документ-камера для демонстрации сборки схем

Печатные пособия:

• Инструкции по сборке и программированию устройств

- Схемы и алгоритмы для выполнения практических работ
- Карты технических проектов различного уровня сложности

Технические средства обучения:

- Зарядные устройства и аккумумуляторы для мобильных компонентов
- USB-кабели для программирования контроллеров
- Набор измерительных приборов (мультиметры)
- Источники питания для стендовых испытаний

Программное обеспечение:

- Онлайн-симулятор Wokwi для виртуального проектирования
- Среда программирования Arduino IDE
- Облачные сервисы для хранения проектов и взаоимодействия
- Мобильные приложения для тестирования IoT-устройств

Оборудование учебного помещения:

- Компьютерный класс с устойчивым интернет-соединением
- Лабораторные столы с антистатическим покрытием
- Системы хранения для оборудования и компонентов
- Выставочные зоны для демонстрации готовых проектов
- Зона для пайки и монтажа (с вытяжной вентиляцией)

Расходные материалы:

- Наборы электронных компонентов (светодиоды, резисторы, транзисторы)
- Датчики различного назначения (температуры, влажности, движения, освещенности)
 - Соединительные провода и кабели
 - Материалы для создания корпусов устройств (3D-принтер, пластик, картон)

Средства безопасности:

- Аптечка первой помощи
- Огнетушители
- Средства индивидуальной защиты (очки, перчатки)
- Инструкции по технике безопасности при работе с электрооборудованием

Список рекомендованной литературы

Учебные пособия:

- Специализированные учебные пособия и рабочие тетради компании «МГБОТ»
- Дидактические материалы, адаптированные для различных уровней подготовки обучающихся

Методические ресурсы для педагога:

- Официальный сайт и сообщество платформы содержат множество руководств и примеров проектов Wokwi.
- Библиотека готовых учебных материалов, включая видеоуроки, поурочное планирование и методические разработки

Техническая документация:

- Комплект инструкций по эксплуатации и методических указаний, поставляемых с наборами «МГБОТ»
- Технические паспорта и руководства по сборке и программированию ІоТ устройств

Содержание курса «Интернет вещей»

Методы и приемы организации учебной деятельности ориентированы на развитие практических навыков программирования, схемотехники и проектного мышления. Программа каждого занятия рассчитана на 2 академических часа по 40 минут (80 минут), что позволяет реализовать комплексный подход к освоению материала, сочетая виртуальное моделирование с реальной практикой.

1. Технический брифинг и планирование (15 минут)

- Постановка технического задания на занятие
- Обсуждение стратегии выполнения индивидуальных проектов
- Повторение правил безопасности при работе с электроникой
- Знакомство с новыми компонентами и их характеристиками

2. Теоретический блок с интерактивными демонстрациями (20 минут)

- Изучение принципов работы электронных компонентов и датчиков
- Разбор типовых схемных решений и алгоритмов
- Анализ возможных ошибок при программировании и сборке
- Демонстрация работы датчиков и исполнительных механизмов

3. Практический блок: индивидуальная работа по станциям (40 минут)

Станция 1 - Виртуальное проектирование (Wokwi)

- Создание и тестирование электронных схем в симуляторе
- Написание и отладка алгоритмов управления
- Моделирование работы ІоТ-устройств

Станция 2 - Физическая реализация (МГБОТ)

- Сборка и пайка электронных компонентов
- Подключение и настройка датчиков и модулей
- Тестирование работоспособности устройств

Станция 3 - Программирование и отладка

- Перенос кода из симулятора на реальные контроллеры
- Настройка сетевого взаимодействия устройств
- Оптимизация программного кода

4. Анализ и презентация результатов (15 минут)

- Демонстрация созданных устройств и их функционала
- Анализ успехов и возникших технических трудностей
- Коллективное обсуждение оптимальных решений
- Корректировка индивидуальных планов развития

Особенности организации сдвоенных занятий:

- Ротация станций обеспечивает освоение всех направлений деятельности
- Комплексный подход к решению технических задач
- Возможность реализации многоэтапных проектов
- Глубокая проработка каждого аспекта создания IoT-устройств
- Эффективное использование оборудования и программного обеспечения

Преимущества сдвоенного формата:

- Оптимальное сочетание виртуального и реального экспериментирования
- Возможность полноценной проектной работы
- Снижение времени на организационные переходы
- Углубленное освоение сложных тем программирования
- Формирование целостного представления о разработке электронных систем

Дополнительная станция - Развитие инженерного мышления (ТРИЗ) (15

минут)

Цель станции: Развитие системного мышления и изобретательских навыков через методы Теории решения изобретательских задач.

Формат работы:

- Решение технических кейсов
- Индивидуальные задания на развитие творческого мышления

Применение приемов ТРИЗ:

- Метод «идеального конечного результата»
- Принцип «вынесения» и «предварительного действия»
- Прием «объединения-разделения функций»

Решение изобретательских задач:

- «Как увеличить автономность устройства без увеличения батареи?»
- «Как организовать связь между устройствами без Wi-Fi?»
- «Как защитить электронику от перегрева без вентилятора?»

Разработка инновационных решений:

- Проектирование систем с самодиагностикой
- Анализ ресурсов для оптимизации устройств
- Создание многофункциональных компонентов

Методическое обеспечение станции:

- Набор карточек с техническими противоречиями в электронике
- Дидактические материалы по методам ТРИЗ для ІоТ
- Примеры успешных инженерных решений
- Шаблоны для анализа проблемных ситуаций в программировании

Критерии эффективности работы:

- Умение выделять главное противоречие в технической задаче
- Способность генерировать нестандартные решения
- Навык анализа сильных и слабых сторон предложенных идей
- Умение аргументировать выбор технического решения

Пример задания для станции ТРИЗ с Wokwi (для детей 9 лет):

«В симуляторе Wokwi мы собрали схему с тремя светодиодами, но они мигают все одновременно, а мы хотим, чтобы они мигали по очереди, как гирлянда!»

Задание:

Используй подсказки ТРИЗ, придумай 3 способа заставить светодиоды мигать по очереди.

Подсказки и решения:

Способ 1: «Раздели по времени» (принцип разделения)

- Включи первый светодиод, подожди, выключи
- Потом включи второй светодиод, подожди, выключи
- Потом включи третий светодиод, подожди, выключи

Способ 2: «Сделай цепочку» (принцип последовательности)

- Сначала горит только красный светодиод
- Потом красный гаснет и загорается желтый
- Потом желтый гаснет и загорается зеленый

Способ 3: «Бегущий огонёк» (принцип непрерывности)

- Светодиоды горят по очереди, но не гаснут полностью
- Создается эффект «бегущего» огонька

Практика в Wokwi:

Что будем делать в симуляторе:

- 1. Открываем готовую схему с тремя светодиодами
- 2. Пробуем разные варианты кода

- 3. Смотрим, как меняется работа схемы
- 4. Выбираем самый красивый вариант гирлянды

Пример простого кода для начала:

python

Включаем светодиоды по очереди с задержкой

digitalWrite(13, HIGH) # Включили первый

delay(500) # Подождали

digitalWrite(13, LOW) # Выключили первый digitalWrite(12, HIGH) # Включили второй

delay(500) # Подождали

Что развиваем:

- Учимся видеть проблему («все мигают вместе»)
- Придумываем разные решения
- Проверяем их в безопасном симуляторе
- Выбираем лучшее решение

Такой подход учит находить несколько решений одной задачи и проверять их без боязни что-то сломать!

Основные разделы программы

Раздел программы	Содержание раздела	Формируемые умения	Кол-во часов
Знакомство с	• Что такое «умные вещи»:	• Умение видеть	10
Интернетом вещей	примеры из жизни. технологии в		
	• Правила безопасности при	повседневной жизни.	
	работе с электроникой.	• Навыки безопасной	
	• Первые шаги в Wokwi:	работы с электроникой.	
	создание простой схемы со	• Основы работы в	
	светодиодом.	симуляторе.	
	• Игра «Найди умные		
	устройства вокруг нас».		
Основы электроники	• Знакомство с	• Навыки работы с	14
_	компонентами: батарейка,	электронными	
	светодиод, кнопка, провод.	компонентами.	
	• Сборка простых цепей на	• Умение читать простые	
	макетной плате.	схемы.	
	• Игра «Собери цепь»:	• Развитие мелкой	
	включи светодиод разными	моторики.	
	способами.		
	• Создание проекта		
	«Мигающий светильник» в		
	Wokwi.		
Программирование	• Основы программирования	• Понимание базовых	16
для начинающих	в визуальной среде.	алгоритмов.	
	• Команды «включить»,	• Умение составлять	
	«выключить», «подождать».	последовательности	
	• Создание анимации	действий.	
	светодиодов в Wokwi.	• Развитие логического	
	• Проект «Светофор» и	мышления.	
	«Веселые огоньки».		
Умные устройства	• Знакомство с датчиками:	• Умение работать с	16
своими руками	света, температуры,	датчиками.	
	движения.	• Навыки создания	
	• Создание проекта «Ночной	простых ІоТ-устройств.	

	светильник». • Разработка «Сигнализации для комнаты».	• Развитие творческого мышления.	
	• Сборка простых устройств из набора МГБОТ.		
Мой первый ІоТ-	• Разработка собственного	• Навыки проектной	8
проект	«умного» устройства.	работы.	
	• Подготовка презентации	• Умение презентовать	
	проекта.	свои идеи.	
	• Выставка готовых работ.	• Развитие	
	• Игра «Расскажи о своем	коммуникативных	
	изобретении».	способностей.	

Итого: 64 часа

Особенности программы:

- Простые и понятные проекты
- Много практики в симуляторе Wokwi
- Постепенный переход от виртуальных схем к реальным устройствам
- Игровые формы обучения
- Минимум теории, максимум практики

Программа разработана с учетом возрастных особенностей детей 9-12 лет и позволяет в доступной форме познакомиться с основами Интернета вещей через создание простых, но интересных проектов.

Методы и формы работы

Каждое занятие курса строится по принципу: **одна техническая задача - один работающий прототип**. Это означает, что на каждом занятии решается конкретная практическая проблема, через которую осваиваются новые компетенции:

- правила сборки электронных схем (задания «Мигающий светодиод», «Умный выключатель», «Даталогический термометр»);
- принципы программирования устройств (задания «Светофор», «Автоматический ночник», «Сигнализация превышения температуры»);
- методы отладки и тестирования (кейсы «Поиск ошибки в схеме», «Диагностика неисправности датчика», «Оптимизация работы устройства»);
- способы решения технических противоречий (задачи «Энергосбережениефункциональность», «Надежность-стоимость», «Простота-возможности»).

Организационные принципы проведения занятий:

- техническое задание формулируется в доступной форме, учащиеся анализируют задачу, разрабатывают решение и представляют его в виде схемы или алгоритма;
- условия практической проблемы предоставляются в виде карточки задания, учащиеся создают прототип в симуляторе Wokwi и проводят виртуальные испытания;
- комплексные задачи предлагаются в формате мини-кейсов, учащиеся работают над поиском оптимального технического решения;
- совместно с обучающимися разрабатываются алгоритмы решения типовых проблем и создаются модификации устройств (творческий проект).

Особенности организации практической работы:

• задания выполняются по индивидуальным траекториям с использованием персональных рабочих мест;

- используются дифференцированные задачи трех уровней сложности («новичок», «исследователь», «эксперт»);
- применяется принцип «от виртуального к реальному» от симулятора Wokwi к физическим устройствам МГБОТ;
- обеспечивается преемственность заданий через систему «уровней достижений».

Универсальность материалов занятий позволяет включать в образовательный процесс как учащихся, имеющих предварительную подготовку, так и новичков, поскольку система заданий предусматривает:

- индивидуальный темп освоения материала
- вариативность технических решений
- возможность повторения и закрепления
- постепенное усложнение практических задач

Формы организации учебной деятельности:

- индивидуальная практическая работа
- парное программирование (один пишет код, второй проверяет)
- мини-группы для обсуждения идей (2-3 человека)
- демонстрационные сессии и защита проектов
- соревновательные форматы «Лучший проект недели»
- экспериментальные исследования в симуляторе

Дифференциация заданий:

- Базовый уровень: работа по готовым схемам и шаблонам
- Продвинутый уровень: модификация готовых решений
- Творческий уровень: разработка собственных проектов

Такая организация учебного процесса способствует развитию алгоритмического мышления, технического творчества и навыков самостоятельной работы, формируя основы цифровой грамотности и готовность к решению практических задач в области интернета вещей.

Формы проведения занятий

- 1. **Проектный практикум** разработка и создание IoT-устройств для решения практических задач из повседневной жизни.
- 2. **Виртуальная лаборатория** изучение основ электроники и схемотехники через эксперименты в симуляторе Wokwi.
- 3. **Индивидуальные челленджи** выполнение заданий на время и точность: сборка схем, программирование алгоритмов, отладка устройств.
- 4. **Станционное занятие** последовательная работа по направлениям: проектирование в Wokwi, сборка устройств, программирование, тестирование.
- 5. **Проблемный воркшоп** коллективный анализ неисправностей и поиск решений технических проблем в устройствах.
- 6. **ТРИЗ-практикум** решение изобретательских задач и технических противоречий в области интернета вещей.
- 7. **Технический мастер-класс** отработка монтажа компонентов и настройки датчиков.
- 8. **Кодинг-марафон** создание и оптимизация программ для управления умными устройствами.
- 9. **Прототипирование** разработка и испытание модифицированных версий ІоТ-устройств с новыми функциями.

- 10. Демо-день презентация и защита созданных проектов перед аудиторией.
- 11. Экспериментальное исследование тестирование работы датчиков в различных условиях среды.
- 12. **Инженерный квест** последовательное выполнение заданий по сборке и программированию комплексной IoT-системы.

Особенности организации форм работы:

- Сочетание индивидуальной и парной работы
- Постепенное усложнение практических заданий
- Цикличность «теория-практика-рефлексия»
- Использование реальных кейсов из жизни
- Интеграция виртуального и физического экспериментирования

Каждая форма занятия направлена на формирование конкретных компетенций в области интернета вещей и обеспечивает разнообразие видов деятельности, поддерживая высокий интерес учащихся к изучаемой теме.

Раздел программы «Интернет вещей» 9-12 лет (4 класс, 1 год обучения - 64 часа)

№	Раздел программы	Кол- во часов	Основные виды учебной деятельности учащихся
1	Знакомство с Интернетом вещей	12	Изучать примеры IoT-устройств в повседневной жизни. Осваивать правила безопасности при работе с электроникой. Знакомиться с интерфейсом симулятора Wokwi. Создавать первый проект «Мигающий светодиод». Проводить эксперименты с подключением кнопки.
2	Основы электроники	16	Изучать основные электронные компоненты: светодиоды, резисторы, кнопки, провода. Собирать простые цепи на макетной плате. Осваивать чтение элементарных схем. Создавать проекты «Светофор» и «Управляемый светильник». Проводить испытания собранных схем.
3	Работа с датчиками	18	Знакомиться с различными типами датчиков (освещенности, температуры, движения). Изучать принципы подключения датчиков к микроконтроллеру. Создавать проекты «Автоматический ночник» и «Термометр». Проводить эксперименты по калибровке датчиков. Анализировать данные с датчиков.
4	Основы программирования	10	Осваивать базовые команды программирования. Изучать понятия «переменная», «цикл», «условие». Создавать

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

			простые алгоритмы для автоматического управления устройствами. Отлаживать программы в симуляторе Wokwi.
5	Создание	8	Разрабатывать индивидуальный проект умного
	финального проекта		устройства. Собирать и программировать свое
			устройство. Подготавливать презентацию проекта.
			Участвовать в выставке-демонстрации работ.
			Анализировать результаты и делиться опытом.

Тематическое планирование, 4 класс (64 часа)

Месяц	<u>№</u> занятия	Развиваемые компетенции и содержание занятия	Часы
Сентябрь	1	Знакомство с Интернетом вещей. Что такое «умные вещи»	2
		вокруг нас? Игра «Найди ІоТ-устройство». Правила	
		безопасности.	
	2	Первые шаги в Wokwi . Интерфейс симулятора. Создание	2
		виртуального проекта «Мигающий светодиод».	
	3	Основы электроники в симуляторе. Изучение светодиодов,	2
		кнопок, резисторов. Проект «Веселые огоньки».	
	4	Проект «Светофор» в Wokwi. Создание работающей модели	2
		светофора с тремя светодиодами.	
Октябрь	5	Датчики в Wokwi. Знакомство с виртуальными датчиками.	2
		Проект «Автоматический фонарь».	
	6	Программирование условий. Создание устройств,	2
		реагирующих на изменение среды. Проект «Умное окно».	
	7	Температурные датчики. Работа с виртуальным термометром.	2
		Проект «Комнатный термометр».	
	8	Сигнализация в Wokwi. Создание системы оповещения.	2
		Проект «Пожарная сигнализация».	
Ноябрь	9	Знакомство с набором МГБОТ. Изучение компонентов:	2
		контроллер, датчики, светодиоды. Правила безопасности.	
	10	Первая физическая схема. Сборка цепи «Мигающий	2
		светодиод» на оборудовании МГБОТ. Сравнение с Wokwi.	
	11	Реальные датчики освещенности. Подключение датчика из	2
		набора МГБОТ. Проект «Ночной светильник».	
	12	Сравнение виртуального и реального. Параллельная работа в	2
		Wokwi и с МГБОТ. Анализ различий.	
Декабрь	13	Температурные датчики МГБОТ. Подключение и	2
		калибровка. Проект «Домашняя метеостанция».	
	14	Датчики движения на практике. Создание системы	2
		сигнализации на реальном оборудовании.	
	15	Проект «Охранная система». Комбинирование датчиков	2
		движения и освещенности.	
	16	Новогодний проект. Создание «умной гирлянды» с	2
		использованием МГБОТ.	
Январь	17	Работа с кнопками. Создание интерактивных устройств.	2
-		Проект «Умный выключатель».	

1 площадка 192071 Санкт-Петербург ул. Бухарестская д.33, корп. 6, литер А, тел/факс 774-53-56 2 площадка 192241 Санкт-Петербург Южное шоссе д.55 корп. 7, строение 1; тел/факс 246-50-25 http://226school.ru; e-mail: info.sch226@obr.gov.spb.ru

	18	Аналоговые и цифровые сигналы. Практические	2
		эксперименты с оборудованием МГБОТ.	
	19	Проект «RGB-светильник». Создание устройства с	2
		изменяемым цветом свечения.	
	20	Изучение сервоприводов. Подключение и управление	2
		моторами из набора МГБОТ.	
Февраль	21	Проект «Автоматическая дверь». Создание системы с	2
-		датчиком движения и сервоприводом.	
	22	Комплексные системы. Объединение нескольких устройств в	2
		одну умную систему.	
	23	Проект «Умная комната». Разработка автоматизированного	2
		помещения.	
	24	Системы автоматизации. Создание проекта «Умная теплица «	2
		на базе МГБОТ.	
Март	25	Подготовка к выставке. Выбор темы финального проекта.	2
•		Разработка концепции.	
	26	Создание проектов. Практическая работа над	2
		индивидуальными устройствами.	
	27	Программирование и отладка. Написание кода и исправление	2
		ошибок.	
	28	Тестирование устройств. Проведение испытаний, сбор	2
		отзывов одноклассников.	
Апрель	29	Создание презентаций. Подготовка демонстрационных	2
•		материалов.	
	30	Защита проектов. Презентация готовых устройств.	2
		Обсуждение результатов.	
	31	Выставка достижений. Демонстрация лучших работ.	2
		Награждение участников.	
	32	Итоговое занятие. Рефлексия достижений. Планы на	2
		следующий учебный год.	
	-		